Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Emerg Microbes Infect ; 11(1): 662-675, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1665836

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that has had significant impacts on human health and economies worldwide. SARS-CoV-2 is highly transmissible and the cause of coronavirus disease 2019 in humans. A wide range of animal species have also been shown to be susceptible to SARS-CoV-2 by experimental and/or natural infections. Sheep are a commonly farmed domestic ruminant that have not been thoroughly investigated for their susceptibility to SARS-CoV-2. Therefore, we performed in vitro and in vivo studies which consisted of infection of ruminant-derived cells and experimental challenge of sheep to investigate their susceptibility to SARS-CoV-2. Our results showed that sheep-derived kidney cells support SARS-CoV-2 replication. Furthermore, the experimental challenge of sheep demonstrated limited infection with viral RNA shed in nasal and oral swabs at 1 and 3-days post challenge (DPC); viral RNA was also detected in the respiratory tract and lymphoid tissues at 4 and 8 DPC. Sero-reactivity was observed in some of the principal infected sheep but not the contact sentinels, indicating that transmission to co-mingled naïve sheep was not highly efficient; however, viral RNA was detected in respiratory tract tissues of sentinel animals at 21 DPC. Furthermore, we used a challenge inoculum consisting of a mixture of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the B.1.1.7-like alpha variant of concern, to study competition of the two virus strains. Our results indicate that sheep show low susceptibility to SARS-CoV-2 infection and that the alpha variant outcompeted the lineage A strain.


Subject(s)
COVID-19 , Coinfection , Sheep/virology , Animals , COVID-19/veterinary , Coinfection/veterinary , SARS-CoV-2
2.
Emerg Microbes Infect ; 11(1): 95-112, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1541489

ABSTRACT

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/transmission , Animal Diseases/virology , COVID-19/veterinary , Deer , Pregnancy Complications, Infectious , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Disease Susceptibility , Enzyme-Linked Immunosorbent Assay , Female , High-Throughput Nucleotide Sequencing , Organ Specificity , Pregnancy , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Virus Shedding
3.
Parasit Vectors ; 14(1): 214, 2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1195926

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged coronavirus that is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 in humans is characterized by a wide range of symptoms that range from asymptomatic to mild or severe illness including death. SARS-CoV-2 is highly contagious and is transmitted via the oral-nasal route through droplets and aerosols, or through contact with contaminated fomites. House flies are known to transmit bacterial, parasitic and viral diseases to humans and animals as mechanical vectors. Previous studies have shown that house flies can mechanically transmit coronaviruses, such as turkey coronavirus; however, the house fly's role in SARS-CoV-2 transmission has not yet been explored. The goal of this work was to investigate the potential of house flies to mechanically transmit SARS-CoV-2. For this purpose, it was determined whether house flies can acquire SARS-CoV-2, harbor live virus and mechanically transmit the virus to naive substrates and surfaces. METHODS: Two independent studies were performed to address the study objectives. In the first study, house flies were tested for infectivity after exposure to SARS-CoV-2-spiked medium or milk. In the second study, environmental samples were tested for infectivity after contact with SARS-CoV-2-exposed flies. During both studies, samples were collected at various time points post-exposure and evaluated by SARS-CoV-2-specific RT-qPCR and virus isolation. RESULTS: All flies exposed to SARS-CoV-2-spiked media or milk substrates were positive for viral RNA at 4 h and 24 h post-exposure. Infectious virus was isolated only from the flies exposed to virus-spiked milk but not from those exposed to virus-spiked medium. Moreover, viral RNA was detected in environmental samples after contact with SARS-CoV-2 exposed flies, although no infectious virus was recovered from these samples. CONCLUSIONS: Under laboratory conditions, house flies acquired and harbored infectious SARS-CoV-2 for up to 24 h post-exposure. In addition, house flies were able to mechanically transmit SARS-CoV-2 genomic RNA to the surrounding environment up to 24 h post-exposure. Further studies are warranted to determine if house fly transmission occurs naturally and the potential public health implications of such events.


Subject(s)
COVID-19/transmission , Houseflies/virology , Insect Vectors/virology , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Animals , Chlorocebus aethiops , Female , Vero Cells
4.
J Med Entomol ; 58(4): 1948-1951, 2021 07 16.
Article in English | MEDLINE | ID: covidwho-1123316

ABSTRACT

SARS-CoV-2 is a recently emerged, highly contagious virus and the cause of the current COVID-19 pandemic. It is a zoonotic virus, although its animal origin is not clear yet. Person-to-person transmission occurs by inhalation of infected droplets and aerosols, or by direct contact with contaminated fomites. Arthropods transmit numerous viral, parasitic, and bacterial diseases; however, the potential role of arthropods in SARS-CoV-2 transmission is not fully understood. Thus far, a few studies have demonstrated that SARS-CoV-2 replication is not supported in cells from certain insect species nor in certain species of mosquitoes after intrathoracic inoculation. In this study, we expanded the work of SARS-CoV-2 susceptibility to biting insects after ingesting a SARS-CoV-2-infected bloodmeal. Species tested included Culicoides sonorensis (Wirth & Jones) (Diptera: Ceratopogonidae) biting midges, as well as Culex tarsalis (Coquillett) and Culex quinquefasciatus (Say) mosquitoes (Diptera: Culicidae), all known biological vectors for numerous RNA viruses. Arthropods were allowed to feed on SARS-CoV-2-spiked blood and at a time point postinfection analyzed for the presence of viral RNA and infectious virus. Additionally, cell lines derived from C. sonorensis (W8a), Aedes aegypti (Linnaeus) (Diptera: Culicidae) (C6/36), Cx. quinquefasciatus (HSU), and Cx. tarsalis (CxTrR2) were tested for SARS-CoV-2 susceptibility. Our results indicate that none of the biting insects, nor the insect cell lines evaluated support SARS-CoV-2 replication, suggesting that these species are unable to be biological vectors of SARS-CoV-2.


Subject(s)
Ceratopogonidae/virology , Culicidae/virology , Mosquito Vectors/virology , SARS-CoV-2 , Animals , COVID-19/transmission , Female , Host-Pathogen Interactions
SELECTION OF CITATIONS
SEARCH DETAIL